跳至主要內容

重识搜索算法


重识搜索算法

「搜索算法 searching algorithm」用于在数据结构(例如数组、链表、树或图)中搜索一个或一组满足特定条件的元素。

搜索算法可根据实现思路分为以下两类。

  • 通过遍历数据结构来定位目标元素,例如数组、链表、树和图的遍历等。
  • 利用数据组织结构或数据包含的先验信息,实现高效元素查找,例如二分查找、哈希查找和二叉搜索树查找等。

不难发现,这些知识点都已在前面的章节中介绍过,因此搜索算法对于我们来说并不陌生。在本节中,我们将从更加系统的视角切入,重新审视搜索算法。

暴力搜索

暴力搜索通过遍历数据结构的每个元素来定位目标元素。

  • “线性搜索”适用于数组和链表等线性数据结构。它从数据结构的一端开始,逐个访问元素,直到找到目标元素或到达另一端仍没有找到目标元素为止。
  • “广度优先搜索”和“深度优先搜索”是图和树的两种遍历策略。广度优先搜索从初始节点开始逐层搜索,由近及远地访问各个节点。深度优先搜索是从初始节点开始,沿着一条路径走到头为止,再回溯并尝试其他路径,直到遍历完整个数据结构。

暴力搜索的优点是简单且通用性好,无须对数据做预处理和借助额外的数据结构

然而,此类算法的时间复杂度为 O(n)O(n) ,其中 nn 为元素数量,因此在数据量较大的情况下性能较差。

自适应搜索

自适应搜索利用数据的特有属性(例如有序性)来优化搜索过程,从而更高效地定位目标元素。

  • “二分查找”利用数据的有序性实现高效查找,仅适用于数组。
  • “哈希查找”利用哈希表将搜索数据和目标数据建立为键值对映射,从而实现查询操作。
  • “树查找”在特定的树结构(例如二叉搜索树)中,基于比较节点值来快速排除节点,从而定位目标元素。

此类算法的优点是效率高,时间复杂度可达到 O(logn)O(\log n) 甚至 O(1)O(1)

然而,使用这些算法往往需要对数据进行预处理。例如,二分查找需要预先对数组进行排序,哈希查找和树查找都需要借助额外的数据结构,维护这些数据结构也需要额外的时间和空间开支。

!!! note

自适应搜索算法常被称为查找算法,**主要关注在特定数据结构中快速检索目标元素**。

搜索方法选取

给定大小为 nn 的一组数据,我们可以使用线性搜索、二分查找、树查找、哈希查找等多种方法在该数据中搜索目标元素。各个方法的工作原理如下图所示。

多种搜索策略
多种搜索策略

上述几种方法的操作效率与特性如下表所示。

表 -  查找算法效率对比

线性搜索二分查找树查找哈希查找
查找元素O(n)O(n)O(logn)O(\log n)O(logn)O(\log n)O(1)O(1)
插入元素O(1)O(1)O(n)O(n)O(logn)O(\log n)O(1)O(1)
删除元素O(n)O(n)O(n)O(n)O(logn)O(\log n)O(1)O(1)
额外空间O(1)O(1)O(1)O(1)O(n)O(n)O(n)O(n)
数据预处理/排序 O(nlogn)O(n \log n)建树 O(nlogn)O(n \log n)建哈希表 O(n)O(n)
数据是否有序无序有序有序无序

搜索算法的选择还取决于数据体量、搜索性能要求、数据查询与更新频率等。

线性搜索

  • 通用性较好,无须任何数据预处理操作。假如我们仅需查询一次数据,那么其他三种方法的数据预处理的时间比线性搜索的时间还要更长。
  • 适用于体量较小的数据,此情况下时间复杂度对效率影响较小。
  • 适用于数据更新频率较高的场景,因为该方法不需要对数据进行任何额外维护。

二分查找

  • 适用于大数据量的情况,效率表现稳定,最差时间复杂度为 O(logn)O(\log n)
  • 数据量不能过大,因为存储数组需要连续的内存空间。
  • 不适用于高频增删数据的场景,因为维护有序数组的开销较大。

哈希查找

  • 适合对查询性能要求很高的场景,平均时间复杂度为 O(1)O(1)
  • 不适合需要有序数据或范围查找的场景,因为哈希表无法维护数据的有序性。
  • 对哈希函数和哈希冲突处理策略的依赖性较高,具有较大的性能劣化风险。
  • 不适合数据量过大的情况,因为哈希表需要额外空间来最大程度地减少冲突,从而提供良好的查询性能。

树查找

  • 适用于海量数据,因为树节点在内存中是分散存储的。
  • 适合需要维护有序数据或范围查找的场景。
  • 在持续增删节点的过程中,二叉搜索树可能产生倾斜,时间复杂度劣化至 O(n)O(n)
  • 若使用 AVL 树或红黑树,则各项操作可在 O(logn)O(\log n) 效率下稳定运行,但维护树平衡的操作会增加额外开销。