关于社交信息的价值思考

一般的移动社交网络可以认为是由人和内容组成的一个双模网络,在添加位置信息,或者对内容的类型进行细分之后,可以演变成多模复杂网络。信息内容在社交网络中具有相当重要的地位,因为从本质上讲,社交的目的应该是信息的交换。信息、观念和看法的改变是相对较快的,信息内容和社交结构最终构成一个双重反馈回路,社交结构影响信息扩散,而信息则影响社会结构的变化。

如何看待社交网络中信息内容的价值呢?本着面向对象的思想,在这个双模网络中有两个实体:信息内容和人。 人和信息之间的关系是双向的, 因而可以从三个方面评估信息内容的价值:信息对人的影响Ve,人对信息的评价反馈Vf,信息内容本体Vs。

1) 信息对人的影响



根据社交网络中信息内容和我之间的关系,可以分为以下多个维度:
相关性(Relevance):
我是否关心?这条内容与我什么关系呢?


显著性(slinky):

这是相关性在时间维度上的体现,表明我现在或在未来一段时间内释放是否关心改内容?

共鸣性(Resonance):
信息的内容和我所相信的内容是否一致?

严重性(severity):
信息的内容有多好或有多坏?

紧迫性(immediacy):
看到这个信息内容是否需要马上行动?与严重性一起,表示看到信息内容后不作出任何行动的后果。

确定性(certainty):
这个信息内容的效果是否会导致某种痛苦或快乐?或者这种概率非常小?

信源(source):
信息内容来自那里?我是否信任发出信息的人?这是否曾被人吗所验证?

娱乐性(entertainment):
信息的内容是否好玩?是否耐读?

姑且如此吧,目前,还没有想到更多的维度。如果可以对一条内容的每个维度给予赋值,并且给出权重,那么

信息内容对人影响的价值评估Ve:

Ve = a0Releavance+a1Slinky +a2Resonance+
a3
Severity+a4imediacy+a5Certaincy +
a6 source+ a7Entertainment

且 a0+a1+a2+a3+a4+a5+a6+a7=1

2)人对信息的评价反馈



这里主要指多人对信息的统计量,可以分为以下几个维度:
态度(Attitudes):
对改信息的点赞,拍砖之类的总数,是轻交互。

评论(Comments):
对该信息参与程度,还可以对评论的价值,评论的来源等参数进行细化,评论也是一条信息,相当于在一定上下文条件下的递归。

传播(Forwards):

例如转发的数量,覆盖的范围等等。

人对信息内容反馈的价值评估Vf:

Vf = b0Attitudes + b1 Comments + b2 * Forwards
3)信息内容自身

信息容量(capacity):
这是信息内容自身的属性,指内容的大小

信息内容的表达形式(format)
内容的呈现形式,文字,语音,图片,视频拥有不同的权重。

信息内容自身属性的价值评估Vs:

Vs = c0 Capacity + c1 Format

同样使用线性模型,那么信息内容的价值

Vm = m1Ve + m2*Vf +m3Vs

对不同的社交网络,信息的某些维度可能难于计算,而且涉及到时序分析,但是自己总算有了一个信息内容评估的标准,尽管粗糙,但是在一定程度上可以实现对内容价值的感知。

8