25岁Java工程师如何转型学习人工智能? - 阿里技术
“大牛我要问”栏目推出一段时间后,阿里妹收到不少童鞋的来信,其中以职业发展、技术成长的困惑居多。
今天阿里妹选择了一个颇具有代表性的问题:关于目前大热的AI入门学习,希望能帮助有同样问题的童鞋解惑指路。
来信问题:25岁Java工程师如何转型学习AI?
我是一名25岁的Java开发工程师。本科学习的专业是信息与计算科学(数学专业),因为对计算机方面感兴趣,之后培训学习了Java,所以现在从事Java开发。目前就是在电商公司开发一些系统。
我对人工智能非常感兴趣,对数学的兴趣也从未减弱。人工智能设计的学习材料很多,像我这样的状况,如果想要转型以后从事这方面的工作,具体应该学习些什么?
阿里技术童鞋“以均”回信:
首先,我想聊聊为何深度学习最近这么火。
外行所见的是2016年AlphaGo 4比1 战胜李世石,掀起了一波AI热潮,DeepMind背后所用的深度学习一时间火得不得了。其实在内行看来,AlphaGo对阵李世石的结果是毫无悬念的,真正的突破在几年前就发生了。
2012年,Gefferey Hinton的学生Alex使用一个特别构造的深度神经网络(后来就叫AlexNet),在图像识别的专业比赛ImageNet中,得到了远超之前最好成绩的结果,那个时候,整个人工智能领域就已经明白,深度学习的革命已经到来了。
果然,之后深度学习在包括语音识别,图像理解,机器翻译等传统的人工智能领域都超越了原先各自领域效果最好的方法。从2015年起,工业界内一些嗅觉灵敏的人士也意识到,一场革命或已到来。
关于基本概念的学习
机器学习与深度学习
深度学习是机器学习中的一种技术,机器学习包含深度学习。机器学习还包含其他非深度学习的技术,比如支持向量机,决策树,随机森林,以及关于“学习”的一些基本理论,比如,同样都能描述已知数据的两个不同模型,参数更少的那个对未知数据的预测能力更好(奥卡姆剃刀原理)。
深度学习是一类特定的机器学习技术,主要是深度神经网络学习,在之前经典的多层神经网络的基础上,将网络的层数加深,并辅以更复杂的结构,在有极大量的数据用于训练的情况下,在很多领域得到了比其他方法更好的结果。
机器学习与大数据
大数据:机器学习的基础,但在多数语境下,更侧重于统计学习方法。
机器学习,深度学习,数据挖掘,大数据的关系可以用下图表示
系统学习资料
深度学习火起来之后,网上关于深度学习的资料很多。但是其质量参差不齐。我从2013年开始就关注深度学习,见证了它从一个小圈子的领先技术到一个大众所追捧的热门技术的过程,也看了很多资料。我认为一个高质量的学习资料可以帮助你真正的理解深度学习的本质,并且更好地掌握这项技术,用于实践。
以下是我所推荐的学习资料:
首先是视频课程。
Yaser Abu-Mostafa
加州理工的Yaser Abu-Mostafa教授出品的机器学习网络课程,非常系统地讲解了机器学习背后的原理,以及主要的技术。讲解非常深入浅出,让你不光理解机器学习有哪些技术,还能理解它们背后的思想,为什么要提出这项技术,机器学习的一些通用性问题的解决方法(比如用正则化方法解决过拟合)。强烈推荐。
课程名称:Machine Learning Course – CS 156
视频地址:
https://www.youtube.com/watch?v=mbyG85GZ0PI&list=PLD63A284B7615313A
Geoffrey Hinton
深度学习最重要的研究者。也是他和另外几个人(Yann LeCun,Yoshua Bengio等)在神经网络被人工智能业界打入冷宫,进入低谷期的时候仍然不放弃研究,最终取得突破,才有了现在的深度学习热潮。
他在Coursera上有一门深度学习的课程,其权威性自不待言,但是课程制作的质量以及易于理解的程度,实际上比不上前面Yaser Mostafa的。当然,因为其实力,课程的干货还是非常多的。
课程名称:Neural Networks for Machine Learning
课程地址:https://www.coursera.org/learn/neural-networks
UdaCity
Google工程师出品的一个偏重实践的深度学习课程。讲解非常简明扼要,并且注重和实践相结合。推荐。
课程名称:深度学习
课程地址:https://cn.udacity.com/course/deep-learning–ud730
小象学院
国内小象学院出品的一个深度学习课程,理论与实践并重。由纽约城市大学的博士李伟主讲,优点是包含了很多业内最新的主流技术的讲解。值得一看。
课程名称:深度学习(第四期)