时间复杂度
时间复杂度
运行时间可以直观且准确地反映算法的效率。如果我们想要准确预估一段代码的运行时间,应该如何操作呢?
- 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。
- 评估各种计算操作所需的运行时间,例如加法操作
+
需要 1 ns ,乘法操作*
需要 10 ns ,打印操作print()
需要 5 ns 等。 - 统计代码中所有的计算操作,并将所有操作的执行时间求和,从而得到运行时间。
例如在以下代码中,输入数据大小为 :
# 在某运行平台下
def algorithm(n: int):
a = 2 # 1 ns
a = a + 1 # 1 ns
a = a * 2 # 10 ns
# 循环 n 次
for _ in range(n): # 1 ns
print(0) # 5 ns
=== "C++"
// 在某运行平台下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++
cout << 0 << endl; // 5 ns
}
}
// 在某运行平台下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++
System.out.println(0); // 5 ns
}
}
=== "C#"
// 在某运行平台下
void Algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++
Console.WriteLine(0); // 5 ns
}
}
// 在某运行平台下
func algorithm(n int) {
a := 2 // 1 ns
a = a + 1 // 1 ns
a = a * 2 // 10 ns
// 循环 n 次
for i := 0; i < n; i++ { // 1 ns
fmt.Println(a) // 5 ns
}
}
// 在某运行平台下
func algorithm(n: Int) {
var a = 2 // 1 ns
a = a + 1 // 1 ns
a = a * 2 // 10 ns
// 循环 n 次
for _ in 0 ..< n { // 1 ns
print(0) // 5 ns
}
}
// 在某运行平台下
function algorithm(n) {
var a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for(let i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++
console.log(0); // 5 ns
}
}
// 在某运行平台下
function algorithm(n: number): void {
var a: number = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for(let i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++
console.log(0); // 5 ns
}
}
// 在某运行平台下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++
print(0); // 5 ns
}
}
// 在某运行平台下
fn algorithm(n: i32) {
let mut a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for _ in 0..n { // 1 ns ,每轮都要执行 i++
println!("{}", 0); // 5 ns
}
}
// 在某运行平台下
void algorithm(int n) {
int a = 2; // 1 ns
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 循环 n 次
for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++
printf("%d", 0); // 5 ns
}
}
根据以上方法,可以得到算法运行时间为 ns :
但实际上,统计算法的运行时间既不合理也不现实。首先,我们不希望将预估时间和运行平台绑定,因为算法需要在各种不同的平台上运行。其次,我们很难获知每种操作的运行时间,这给预估过程带来了极大的难度。
统计时间增长趋势
时间复杂度分析统计的不是算法运行时间,而是算法运行时间随着数据量变大时的增长趋势。
“时间增长趋势”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 ,给定三个算法函数 A
、B
和 C
:
# 算法 A 的时间复杂度:常数阶
def algorithm_A(n: int):
print(0)
# 算法 B 的时间复杂度:线性阶
def algorithm_B(n: int):
for _ in range(n):
print(0)
# 算法 C 的时间复杂度:常数阶
def algorithm_C(n: int):
for _ in range(1000000):
print(0)
=== "C++"
// 算法 A 的时间复杂度:常数阶
void algorithm_A(int n) {
cout << 0 << endl;
}
// 算法 B 的时间复杂度:线性阶
void algorithm_B(int n) {
for (int i = 0; i < n; i++) {
cout << 0 << endl;
}
}
// 算法 C 的时间复杂度:常数阶
void algorithm_C(int n) {
for (int i = 0; i < 1000000; i++) {
cout << 0 << endl;
}
}
// 算法 A 的时间复杂度:常数阶
void algorithm_A(int n) {
System.out.println(0);
}
// 算法 B 的时间复杂度:线性阶
void algorithm_B(int n) {
for (int i = 0; i < n; i++) {
System.out.println(0);
}
}
// 算法 C 的时间复杂度:常数阶
void algorithm_C(int n) {
for (int i = 0; i < 1000000; i++) {
System.out.println(0);
}
}
=== "C#"
// 算法 A 的时间复杂度:常数阶
void AlgorithmA(int n) {
Console.WriteLine(0);
}
// 算法 B 的时间复杂度:线性阶
void AlgorithmB(int n) {
for (int i = 0; i < n; i++) {
Console.WriteLine(0);
}
}
// 算法 C 的时间复杂度:常数阶
void AlgorithmC(int n) {
for (int i = 0; i < 1000000; i++) {
Console.WriteLine(0);
}
}
// 算法 A 的时间复杂度:常数阶
func algorithm_A(n int) {
fmt.Println(0)
}
// 算法 B 的时间复杂度:线性阶
func algorithm_B(n int) {
for i := 0; i < n; i++ {
fmt.Println(0)
}
}
// 算法 C 的时间复杂度:常数阶
func algorithm_C(n int) {
for i := 0; i < 1000000; i++ {
fmt.Println(0)
}
}
// 算法 A 的时间复杂度:常数阶
func algorithmA(n: Int) {
print(0)
}
// 算法 B 的时间复杂度:线性阶
func algorithmB(n: Int) {
for _ in 0 ..< n {
print(0)
}
}
// 算法 C 的时间复杂度:常数阶
func algorithmC(n: Int) {
for _ in 0 ..< 1000000 {
print(0)
}
}
// 算法 A 的时间复杂度:常数阶
function algorithm_A(n) {
console.log(0);
}
// 算法 B 的时间复杂度:线性阶
function algorithm_B(n) {
for (let i = 0; i < n; i++) {
console.log(0);
}
}
// 算法 C 的时间复杂度:常数阶
function algorithm_C(n) {
for (let i = 0; i < 1000000; i++) {
console.log(0);
}
}
// 算法 A 的时间复杂度:常数阶
function algorithm_A(n: number): void {
console.log(0);
}
// 算法 B 的时间复杂度:线性阶
function algorithm_B(n: number): void {
for (let i = 0; i < n; i++) {
console.log(0);
}
}
// 算法 C 的时间复杂度:常数阶
function algorithm_C(n: number): void {
for (let i = 0; i < 1000000; i++) {
console.log(0);
}
}
// 算法 A 的时间复杂度:常数阶
void algorithmA(int n) {
print(0);
}
// 算法 B 的时间复杂度:线性阶
void algorithmB(int n) {
for (int i = 0; i < n; i++) {
print(0);
}
}
// 算法 C 的时间复杂度:常数阶
void algorithmC(int n) {
for (int i = 0; i < 1000000; i++) {
print(0);
}
}
// 算法 A 的时间复杂度:常数阶
fn algorithm_A(n: i32) {
println!("{}", 0);
}
// 算法 B 的时间复杂度:线性阶
fn algorithm_B(n: i32) {
for _ in 0..n {
println!("{}", 0);
}
}
// 算法 C 的时间复杂度:常数阶
fn algorithm_C(n: i32) {
for _ in 0..1000000 {
println!("{}", 0);
}
}
// 算法 A 的时间复杂度:常数阶
void algorithm_A(int n) {
printf("%d", 0);
}
// 算法 B 的时间复杂度:线性阶
void algorithm_B(int n) {
for (int i = 0; i < n; i++) {
printf("%d", 0);
}
}
// 算法 C 的时间复杂度:常数阶
void algorithm_C(int n) {
for (int i = 0; i < 1000000; i++) {
printf("%d", 0);
}
}
下图展示了以上三个算法函数的时间复杂度。
- 算法
A
只有 个打印操作,算法运行时间不随着 增大而增长。我们称此算法的时间复杂度为“常数阶”。 - 算法
B
中的打印操作需要循环 次,算法运行时间随着 增大呈线性增长。此算法的时间复杂度被称为“线性阶”。 - 算法
C
中的打印操作需要循环 次,虽然运行时间很长,但它与输入数据大小 无关。因此C
的时间复杂度和A
相同,仍为“常数阶”。
相较于直接统计算法运行时间,时间复杂度分析有哪些特点呢?
- 时间复杂度能够有效评估算法效率。例如,算法
B
的运行时间呈线性增长,在 时比算法A
更慢,在 时比算法C
更慢。事实上,只要输入数据大小 足够大,复杂度为“常数阶”的算法一定优于“线性阶”的算法,这正是时间增长趋势所表达的含义。 - 时间复杂度的推算方法更简便。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作的运行时间的统计”简化为“计算操作的数量的统计”,这样一来估算难度就大大降低了。
- 时间复杂度也存在一定的局限性。例如,尽管算法
A
和C
的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法B
的时间复杂度比C
高,但在输入数据大小 较小时,算法B
明显优于算法C
。在这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。
函数渐近上界
给定一个输入大小为 的函数:
def algorithm(n: int):
a = 1 # +1
a = a + 1 # +1
a = a * 2 # +1
# 循环 n 次
for i in range(n): # +1
print(0) # +1
=== "C++"
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
cout << 0 << endl; // +1
}
}
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
System.out.println(0); // +1
}
}
=== "C#"
void Algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
Console.WriteLine(0); // +1
}
}
func algorithm(n int) {
a := 1 // +1
a = a + 1 // +1
a = a * 2 // +1
// 循环 n 次
for i := 0; i < n; i++ { // +1
fmt.Println(a) // +1
}
}
func algorithm(n: Int) {
var a = 1 // +1
a = a + 1 // +1
a = a * 2 // +1
// 循环 n 次
for _ in 0 ..< n { // +1
print(0) // +1
}
}
function algorithm(n) {
var a = 1; // +1
a += 1; // +1
a *= 2; // +1
// 循环 n 次
for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++)
console.log(0); // +1
}
}
function algorithm(n: number): void{
var a: number = 1; // +1
a += 1; // +1
a *= 2; // +1
// 循环 n 次
for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++)
console.log(0); // +1
}
}
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
print(0); // +1
}
}
fn algorithm(n: i32) {
let mut a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for _ in 0..n { // +1(每轮都执行 i ++)
println!("{}", 0); // +1
}
}
void algorithm(int n) {
int a = 1; // +1
a = a + 1; // +1
a = a * 2; // +1
// 循环 n 次
for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)
printf("%d", 0); // +1
}
}
设算法的操作数量是一个关于输入数据大小 的函数,记为 ,则以上函数的的操作数量为:
是一次函数,说明其运行时间的增长趋势是线性的,因此它的时间复杂度是线性阶。
我们将线性阶的时间复杂度记为 ,这个数学符号称为「大 记号 big- notation」,表示函数 的「渐近上界 asymptotic upper bound」。
时间复杂度分析本质上是计算“操作数量函数 ”的渐近上界,其具有明确的数学定义。
!!! abstract "函数渐近上界"
若存在正实数 $c$ 和实数 $n_0$ ,使得对于所有的 $n > n_0$ ,均有 $T(n) \leq c \cdot f(n)$ ,则可认为 $f(n)$ 给出了 $T(n)$ 的一个渐近上界,记为 $T(n) = O(f(n))$ 。
如下图所示,计算渐近上界就是寻找一个函数 ,使得当 趋向于无穷大时, 和 处于相同的增长级别,仅相差一个常数项 的倍数。
推算方法
渐近上界的数学味儿有点重,如果你感觉没有完全理解,也无须担心。因为在实际使用中,我们只需要掌握推算方法,数学意义就可以逐渐领悟。
根据定义,确定 之后,我们便可得到时间复杂度 。那么如何确定渐近上界 呢?总体分为两步:首先统计操作数量,然后判断渐近上界。
第一步:统计操作数量
针对代码,逐行从上到下计算即可。然而,由于上述 中的常数项 可以取任意大小,因此操作数量 中的各种系数、常数项都可以被忽略。根据此原则,可以总结出以下计数简化技巧。
- 忽略 中的常数项。因为它们都与 无关,所以对时间复杂度不产生影响。
- 省略所有系数。例如,循环 次、 次等,都可以简化记为 次,因为 前面的系数对时间复杂度没有影响。
- 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用第
1.
点和第2.
点的技巧。
给定一个函数,我们可以用上述技巧来统计操作数量。
def algorithm(n: int):
a = 1 # +0(技巧 1)
a = a + n # +0(技巧 1)
# +n(技巧 2)
for i in range(5 * n + 1):
print(0)
# +n*n(技巧 3)
for i in range(2 * n):
for j in range(n + 1):
print(0)
=== "C++"
void algorithm(int n) {
int a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (int i = 0; i < 5 * n + 1; i++) {
cout << 0 << endl;
}
// +n*n(技巧 3)
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
cout << 0 << endl;
}
}
}
void algorithm(int n) {
int a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (int i = 0; i < 5 * n + 1; i++) {
System.out.println(0);
}
// +n*n(技巧 3)
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
System.out.println(0);
}
}
}
=== "C#"
void Algorithm(int n) {
int a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (int i = 0; i < 5 * n + 1; i++) {
Console.WriteLine(0);
}
// +n*n(技巧 3)
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
Console.WriteLine(0);
}
}
}
func algorithm(n int) {
a := 1 // +0(技巧 1)
a = a + n // +0(技巧 1)
// +n(技巧 2)
for i := 0; i < 5 * n + 1; i++ {
fmt.Println(0)
}
// +n*n(技巧 3)
for i := 0; i < 2 * n; i++ {
for j := 0; j < n + 1; j++ {
fmt.Println(0)
}
}
}
func algorithm(n: Int) {
var a = 1 // +0(技巧 1)
a = a + n // +0(技巧 1)
// +n(技巧 2)
for _ in 0 ..< (5 * n + 1) {
print(0)
}
// +n*n(技巧 3)
for _ in 0 ..< (2 * n) {
for _ in 0 ..< (n + 1) {
print(0)
}
}
}
function algorithm(n) {
let a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (let i = 0; i < 5 * n + 1; i++) {
console.log(0);
}
// +n*n(技巧 3)
for (let i = 0; i < 2 * n; i++) {
for (let j = 0; j < n + 1; j++) {
console.log(0);
}
}
}
function algorithm(n: number): void {
let a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (let i = 0; i < 5 * n + 1; i++) {
console.log(0);
}
// +n*n(技巧 3)
for (let i = 0; i < 2 * n; i++) {
for (let j = 0; j < n + 1; j++) {
console.log(0);
}
}
}
void algorithm(int n) {
int a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (int i = 0; i < 5 * n + 1; i++) {
print(0);
}
// +n*n(技巧 3)
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
print(0);
}
}
}
fn algorithm(n: i32) {
let mut a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for i in 0..(5 * n + 1) {
println!("{}", 0);
}
// +n*n(技巧 3)
for i in 0..(2 * n) {
for j in 0..(n + 1) {
println!("{}", 0);
}
}
}
void algorithm(int n) {
int a = 1; // +0(技巧 1)
a = a + n; // +0(技巧 1)
// +n(技巧 2)
for (int i = 0; i < 5 * n + 1; i++) {
printf("%d", 0);
}
// +n*n(技巧 3)
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
printf("%d", 0);
}
}
}
以下公式展示了使用上述技巧前后的统计结果,两者推出的时间复杂度都为 。
第二步:判断渐近上界
时间复杂度由多项式 中最高阶的项来决定。这是因为在 趋于无穷大时,最高阶的项将发挥主导作用,其他项的影响都可以被忽略。
下表展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 趋于无穷大时,这些常数变得无足轻重。
表 - 不同操作数量对应的时间复杂度
操作数量 | 时间复杂度 |
---|---|
常见类型
设输入数据大小为 ,常见的时间复杂度类型如下图所示(按照从低到高的顺序排列)。
常数阶
常数阶的操作数量与输入数据大小 无关,即不随着 的变化而变化。
在以下函数中,尽管操作数量 size
可能很大,但由于其与输入数据大小 无关,因此时间复杂度仍为 :
[file]{time_complexity}-[class]{}-[func]{constant}
线性阶
线性阶的操作数量相对于输入数据大小 以线性级别增长。线性阶通常出现在单层循环中:
[file]{time_complexity}-[class]{}-[func]{linear}
遍历数组和遍历链表等操作的时间复杂度均为 ,其中 为数组或链表的长度:
[file]{time_complexity}-[class]{}-[func]{array_traversal}
值得注意的是,输入数据大小 需根据输入数据的类型来具体确定。比如在第一个示例中,变量 为输入数据大小;在第二个示例中,数组长度 为数据大小。
平方阶
平方阶的操作数量相对于输入数据大小 以平方级别增长。平方阶通常出现在嵌套循环中,外层循环和内层循环都为 ,因此总体为 :
[file]{time_complexity}-[class]{}-[func]{quadratic}
下图对比了常数阶、线性阶和平方阶三种时间复杂度。
以冒泡排序为例,外层循环执行 次,内层循环执行 、、、、 次,平均为 次,因此时间复杂度为 。
[file]{time_complexity}-[class]{}-[func]{bubble_sort}
指数阶
生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 个细胞,分裂一轮后变为 个,分裂两轮后变为 个,以此类推,分裂 轮后有 个细胞。
下图和以下代码模拟了细胞分裂的过程,时间复杂度为 。
[file]{time_complexity}-[class]{}-[func]{exponential}
在实际算法中,指数阶常出现于递归函数中。例如在以下代码中,其递归地一分为二,经过 次分裂后停止:
[file]{time_complexity}-[class]{}-[func]{exp_recur}
指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不可接受的,通常需要使用动态规划或贪心等算法来解决。
对数阶
与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 ,由于每轮缩减到一半,因此循环次数是 ,即 的反函数。
下图和以下代码模拟了“每轮缩减到一半”的过程,时间复杂度为 ,简记为 。
[file]{time_complexity}-[class]{}-[func]{logarithmic}
与指数阶类似,对数阶也常出现于递归函数中。以下代码形成了一个高度为 的递归树:
[file]{time_complexity}-[class]{}-[func]{log_recur}
对数阶常出现于基于分治策略的算法中,体现了“一分为多”和“化繁为简”的算法思想。它增长缓慢,是仅次于常数阶的理想的时间复杂度。
提示
" 的底数是多少?"
准确来说,“一分为 $m$”对应的时间复杂度是 $O(\log_m n)$ 。而通过对数换底公式,我们可以得到具有不同底数的、相等的时间复杂度:
$$
O(\log_m n) = O(\log_k n / \log_k m) = O(\log_k n)
$$
也就是说,底数 $m$ 可以在不影响复杂度的前提下转换。因此我们通常会省略底数 $m$ ,将对数阶直接记为 $O(\log n)$ 。
线性对数阶
线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 和 。相关代码如下:
[file]{time_complexity}-[class]{}-[func]{linear_log_recur}
下图展示了线性对数阶的生成方式。二叉树的每一层的操作总数都为 ,树共有 层,因此时间复杂度为 。
主流排序算法的时间复杂度通常为 ,例如快速排序、归并排序、堆排序等。
阶乘阶
阶乘阶对应数学上的“全排列”问题。给定 个互不重复的元素,求其所有可能的排列方案,方案数量为:
阶乘通常使用递归实现。如下图和以下代码所示,第一层分裂出 个,第二层分裂出 个,以此类推,直至第 层时停止分裂:
[file]{time_complexity}-[class]{}-[func]{factorial_recur}
请注意,因为当 时恒有 ,所以阶乘阶比指数阶增长得更快,在 较大时也是不可接受的。
最差、最佳、平均时间复杂度
算法的时间效率往往不是固定的,而是与输入数据的分布有关。假设输入一个长度为 的数组 nums
,其中 nums
由从 至 的数字组成,每个数字只出现一次;但元素顺序是随机打乱的,任务目标是返回元素 的索引。我们可以得出以下结论。
- 当
nums = [?, ?, ..., 1]
,即当末尾元素是 时,需要完整遍历数组,达到最差时间复杂度 。 - 当
nums = [1, ?, ?, ...]
,即当首个元素为 时,无论数组多长都不需要继续遍历,达到最佳时间复杂度 。
“最差时间复杂度”对应函数渐近上界,使用大 记号表示。相应地,“最佳时间复杂度”对应函数渐近下界,用 记号表示:
[file]{worst_best_time_complexity}-[class]{}-[func]{find_one}
值得说明的是,我们在实际中很少使用最佳时间复杂度,因为通常只有在很小概率下才能达到,可能会带来一定的误导性。而最差时间复杂度更为实用,因为它给出了一个效率安全值,让我们可以放心地使用算法。
从上述示例可以看出,最差或最佳时间复杂度只出现于“特殊的数据分布”,这些情况的出现概率可能很小,并不能真实地反映算法运行效率。相比之下,平均时间复杂度可以体现算法在随机输入数据下的运行效率,用 记号来表示。
对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 ,平均时间复杂度为 。
但对于较为复杂的算法,计算平均时间复杂度往往是比较困难的,因为很难分析出在数据分布下的整体数学期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。
"为什么很少看到 $\Theta$ 符号?"
可能由于 $O$ 符号过于朗朗上口,我们常常使用它来表示平均时间复杂度。但从严格意义上看,这种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 $O(n)$”的表述,请将其直接理解为 $\Theta(n)$ 。