归并排序
归并排序
「归并排序 merge sort」是一种基于分治策略的排序算法,包含下图所示的“划分”和“合并”阶段。
- 划分阶段:通过递归不断地将数组从中点处分开,将长数组的排序问题转换为短数组的排序问题。
- 合并阶段:当子数组长度为 1 时终止划分,开始合并,持续地将左右两个较短的有序数组合并为一个较长的有序数组,直至结束。
算法流程
如下图所示,“划分阶段”从顶至底递归地将数组从中点切分为两个子数组。
- 计算数组中点
mid
,递归划分左子数组(区间[left, mid]
)和右子数组(区间[mid + 1, right]
)。 - 递归执行步骤
1.
,直至子数组区间长度为 1 时,终止递归划分。
“合并阶段”从底至顶地将左子数组和右子数组合并为一个有序数组。需要注意的是,从长度为 1 的子数组开始合并,合并阶段中的每个子数组都是有序的。
=== "<1>"
=== "<2>"
=== "<3>"
=== "<4>"
=== "<5>"
=== "<6>"
=== "<7>"
=== "<8>"
=== "<9>"
=== "<10>"
观察发现,归并排序与二叉树后序遍历的递归顺序是一致的。
- 后序遍历:先递归左子树,再递归右子树,最后处理根节点。
- 归并排序:先递归左子数组,再递归右子数组,最后处理合并。
[file]{merge_sort}-[class]{}-[func]{merge_sort}
实现合并函数 merge()
存在以下难点。
- 需要特别注意各个变量的含义。
nums
的待合并区间为[left, right]
,但由于tmp
仅复制了nums
该区间的元素,因此tmp
对应区间为[0, right - left]
。 - 在比较
tmp[i]
和tmp[j]
的大小时,还需考虑子数组遍历完成后的索引越界问题,即i > leftEnd
和j > rightEnd
的情况。索引越界的优先级是最高的,如果左子数组已经被合并完了,那么不需要继续比较,直接合并右子数组元素即可。
算法特性
- 时间复杂度 、非自适应排序:划分产生高度为 的递归树,每层合并的总操作数量为 ,因此总体时间复杂度为 。
- 空间复杂度 、非原地排序:递归深度为 ,使用 大小的栈帧空间。合并操作需要借助辅助数组实现,使用 大小的额外空间。
- 稳定排序:在合并过程中,相等元素的次序保持不变。
链表排序 *
对于链表,归并排序相较于其他排序算法具有显著优势,可以将链表排序任务的空间复杂度优化至 。
- 划分阶段:可以通过使用“迭代”替代“递归”来实现链表划分工作,从而省去递归使用的栈帧空间。
- 合并阶段:在链表中,节点增删操作仅需改变引用(指针)即可实现,因此合并阶段(将两个短有序链表合并为一个长有序链表)无须创建额外链表。
具体实现细节比较复杂,有兴趣的同学可以查阅相关资料进行学习。