跳至主要內容

归并排序


归并排序

「归并排序 merge sort」是一种基于分治策略的排序算法,包含下图所示的“划分”和“合并”阶段。

  1. 划分阶段:通过递归不断地将数组从中点处分开,将长数组的排序问题转换为短数组的排序问题。
  2. 合并阶段:当子数组长度为 1 时终止划分,开始合并,持续地将左右两个较短的有序数组合并为一个较长的有序数组,直至结束。
归并排序的划分与合并阶段
归并排序的划分与合并阶段

算法流程

如下图所示,“划分阶段”从顶至底递归地将数组从中点切分为两个子数组。

  1. 计算数组中点 mid ,递归划分左子数组(区间 [left, mid] )和右子数组(区间 [mid + 1, right] )。
  2. 递归执行步骤 1. ,直至子数组区间长度为 1 时,终止递归划分。

“合并阶段”从底至顶地将左子数组和右子数组合并为一个有序数组。需要注意的是,从长度为 1 的子数组开始合并,合并阶段中的每个子数组都是有序的。

=== "<1>"
归并排序步骤

=== "<2>"
merge_sort_step2

=== "<3>"
merge_sort_step3

=== "<4>"
merge_sort_step4

=== "<5>"
merge_sort_step5

=== "<6>"
merge_sort_step6

=== "<7>"
merge_sort_step7

=== "<8>"
merge_sort_step8

=== "<9>"
merge_sort_step9

=== "<10>"
merge_sort_step10

观察发现,归并排序与二叉树后序遍历的递归顺序是一致的。

[file]{merge_sort}-[class]{}-[func]{merge_sort}

实现合并函数 merge() 存在以下难点。

算法特性

链表排序 *

对于链表,归并排序相较于其他排序算法具有显著优势,可以将链表排序任务的空间复杂度优化至 O(1)O(1)

具体实现细节比较复杂,有兴趣的同学可以查阅相关资料进行学习。